Classification of Benign and Malignancy in Lung Cancer Using Capsule Networks with Dynamic Routing Algorithm on Computed Tomography Images

نویسندگان

چکیده

There is a widespread agreement that lung cancer one of the deadliest types cancer, affecting both women and men. As result, detecting at an early stage crucial to create accurate treatment plan forecasting reaction patient adopted treatment. For this reason, development Convolutional Neural Networks (CNNs) for task classification has recently seen trend in attention. CNNs have great potential, but they need lot training data struggle with input alterations. To address these limitations CNNs, novel machine-learning architecture capsule networks been presented, it potential completely transform ares deep learning. Capsule networks, which are focus work, interesting because can withstand rotation affine translation relatively little data. This research optimizes performance CapsNets by designing new allows them perform better on challenge classification. The findings demonstrate proposed Network method outperforms challenge. CapsNet single convolution layer 32 features (CN-1-32), 64 (CN-1-64), double (CN-2-64) three Capsulel developed Lung nodules, benign malignant, classified using CT images. LIDC-IDRI database was utilized assess those networks. Based testing results, CN-2-64 network performed out tested, specificity 98.37%, sensitivity 97.47% accuracy 97.92%.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

fault location in power distribution networks using matching algorithm

چکیده رساله/پایان نامه : تاکنون روش‏های متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روش‏ها در شبکه توزیع به دلایلی همچون وجود انشعاب‏های متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تک‏فاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...

Investigating Capsule Networks with Dynamic Routing for Text Classification

In this study, we explore capsule networks with dynamic routing for text classification. We propose three strategies to stabilize the dynamic routing process to alleviate the disturbance of some noise capsules which may contain “background” information or have not been successfully trained. A series of experiments are conducted with capsule networks on six text classification benchmarks. Capsul...

متن کامل

Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images

Lung cancer is the most common cancer that cannot be ignored and cause death with late health care. Currently, CT can be used to help doctors detect the lung cancer in the early stages. In many cases, the diagnosis of identifying the lung cancer depends on the experience of doctors, which may ignore some patients and cause some problems. Deep learning has been proved as a popular and powerful m...

متن کامل

Prevalence of Idiopathic Osteosclerosis on Cone Beam Computed Tomography Images

Objectives: This study was performed to investigate the prevalence of idiopathic osteosclerosis on cone beam computed tomography (CBCT) images of patients. Methods: In this descriptive, cross-sectional study, 240 CBCT scans of patients (125 women, 115 men) referred to a private oral and maxillofacial radiology clinic in Tehran in 2013 were selected and evaluated. Presence of idiopathic osteosc...

متن کامل

Early Lung Cancer Detection Using Computed Tomography

INTRODUCTION Lung cancer is the leading cause of cancer-related death in United States and worldwide with around 1.3 million death per year. But general prognosis of lung cancer is poor. Overall, 16% of people in the United States diagnosed with lung cancer survive five years after the diagnosis [1]. Late diagnosis is the primary reason for the high mortality. Lung cancer is assigned a stage fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of artificial intelligence and technology

سال: 2023

ISSN: ['2766-8649']

DOI: https://doi.org/10.37965/jait.2023.0218